Transforming nondurable timber into a lasting investment

Punitha Satharasinghe A Wood Lanka

Types of less durable timber

Rubber

Pine

Hazard Class

HAZARD CLASS	EXPOSURE	SPECIFIC SERVICE CONDITIONS	BIOLOGICAL HAZARD
H1	Inside, above ground	Completely protected from the weather and well ventilated, and protected from termites	Lyctid borers
H2**	Inside, above ground	Protected from wetting. Nil leaching	Borers and termites
H3	Outside, above ground	Subject to periodic moderate wetting and leaching	Moderate decay, borers and termites
H4	Outside, in-ground	Subject to severe wetting and leaching	Severe decay, borers and termites
H5	Outside, in-ground contact with or in fresh water	Subject to extreme wetting and leaching and/or where the critical use requires a higher degree of protection	Very severe decay, borers and termites
H6	Marine waters	Subject to prolonged immersion in sea water	Marine wood borers and decay

How can we increase durability of wood?

Dip Diffusion
Pressure Impregnation

Vacuum Pressure Treatment

Initial Vacuum at -76Hmg Pressure held at 200 PSI Final Vacuum at -76Hmg

Chemical Types

Boron Boron Borax

CCB Copper Chrome Boron

ACQ
Alkaline Copper Quaternary

Boron Treatment - H1

Both pressure and Dip Diffusion

Effective against Bores Only

Not suitable for outdoor use

No color change

Commonly used for indoor furniture manufacturing

CCB - Copper Chrome Boron H1-H2

Can only be treated using Pressure Treatment.

Effective against Bores and small amount Termites.

Leaves a green tint. Not suitable for long term outdoor use

Leaves a green tint.

Not eco friendly

ACQ - Alkaline Copper Quaternary. H3 - H5

Can only be treated using Pressure Treatment.

Leaves a green tint.

Effective against Bores, Fungus and Termites.

Environmentally Friendly.

Green Building Certified.

Checking Penetration By spot test

Boron test A&B solution

CCB/ACQ Chrome Azurol

Commonly Practiced Method.

The duration for the process of kiln drying varies with the thickness of the wood and the species.

Duration 8-12 days

To bring down moisture levels to "work-able" range efficiently workable range is a level that will no t end in the myriad of problems that can be caused by excess moisture content wo od.

Key advantages of treated wood

Cost Efficient

Long Lasting

Availability

Sustainable

Wood Buildings

Treated wood for a sustainable Future